Generative Inferences Based on a Discriminative Bayesian Model of Relation Learning

نویسندگان

  • Dawn Chen
  • Hongjing Lu
  • Keith J. Holyoak
چکیده

Bayesian Analogy with Relational Transformations (BART) is a discriminative model that can learn comparative relations from non-relational inputs (Lu, Chen & Holyoak, 2012). Here we show that BART can be extended to solve inference problems that require generation (rather than classification) of relation instances. BART can use its generative capacity to perform hypothetical reasoning, enabling it to make quasideductive transitive inferences (e.g., “If A is larger than B, and B is larger than C, is A larger than C?”). The extended model can also generate human-like instantiations of a learned relation (e.g., answering the question, “What is an animal that is smaller than a dog?”). These modeling results suggest that discriminative models, which take a primarily bottom-up approach to relation learning, are potentially capable of using their learned representations to make generative inferences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Heuristics for Discriminative Structure Learning of Bayesian Network Classifiers

We introduce a simple order-based greedy heuristic for learning discriminative structure within generative Bayesian network classifiers. We propose two methods for establishing an order of N features. They are based on the conditional mutual information and classification rate (i.e., risk), respectively. Given an ordering, we can find a discriminative structure with O ( Nk+1 ) score evaluations...

متن کامل

Competitive generative models with structure learning for NLP classification tasks

In this paper we show that generative models are competitive with and sometimes superior to discriminative models, when both kinds of models are allowed to learn structures that are optimal for discrimination. In particular, we compare Bayesian Networks and Conditional loglinear models on two NLP tasks. We observe that when the structure of the generative model encodes very strong independence ...

متن کامل

A Logic-based Approach to Generatively Defined Discriminative Modeling

Conditional random fields (CRFs) are usually specified by graphical models but in this paper we propose to use probabilistic logic programs and specify them generatively. Our intension is first to provide a unified approach to CRFs for complex modeling through the use of a Turing complete language and second to offer a convenient way of realizing generative-discriminative pairs in machine learn...

متن کامل

Order-based Discriminative Structure Learning for Bayesian Network Classifiers

We introduce a simple empirical order-based greedy heuristic for learning discriminative Bayesian network structures. We propose two metrics for establishing the ordering of N features. They are based on the conditional mutual information. Given an ordering, we can find the discriminative classifier structure with O (Nq) score evaluations (where constant q is the maximum number of parents per n...

متن کامل

Discriminative Learning of Generative Models for Sequence Classification and Motion Tracking

I consider the issue of learning generative probabilistic models (e.g., Bayesian Networks) for the problems of classification and regression. As the generative models now serve as target-predicting functions, the learning problem can be treated differently from the traditional density estimation. Unlike the likelihood maximizing generative learning that fits a model to overall data, the discrim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013